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Abstra
t. In this arti
le some omnipresen
e 
ondition is given whi
h

assures that a derived-
anoni
al algebra is already 
on
ealed-
anoni
al.

The proof exploits the theory of 
oherent sheaves over ex
eptional 
urves.

1. Introdu
tion

Throughout this arti
le let k be an arbitrary �eld, and A be a �nite dimen-

sional k-algebra. We shall use the term module for a �nitely generated right

A-module. The 
ategory of (�nitely generated right) A-modules is denoted

by mod(A). Moreover, the derived 
ategory of bounded 
omplexes of A-

modules (see [4℄) will be denoted by D

b

(A). We 
all A derived-
anoni
al , if

there is a 
anoni
al algebra � (in the sense of Ringel/Crawley-Boevey [16℄)

su
h that D

b

(A) ' D

b

(�) as triangulated 
ategories. If moreover � is of

tubular type, then we 
all A derived-tubular . Note that a derived-
anoni
al

algebra is 
onne
ted sin
e its derived 
ategory is. The Grothendie
k group

of mod(A) will be denoted by K

0

(A), the Coxeter transformation on K

0

(A)

by �.

Re
all from [16℄ that for a 
anoni
al algebra � the module 
ategory

mod(�) is trise
ted into mod

+

(�)_mod

0

(�)_mod

�

(�), where mod

0

(�) is a

stable separating tubular family, and there are no non-zero morphisms going

from right to left. Re
all from [11℄ that a k-algebra A is 
alled 
on
ealed-


anoni
al (almost 
on
ealed-
anoni
al , resp.), if for some 
anoni
al algebra �

there exists a tilting module lying in mod

+

(�) (in mod

+

(�)_mod

0

(�), resp.)

and whose endomorphism algebra is isomorphi
 to A. If additionally � is of

tubular type, then we 
all A a tubular algebra. Con
ealed-
anoni
al alge-

bras (in parti
ular: tubular and 
anoni
al algebras) were studied by several

authors (see for example [6, 9, 11, 13, 14, 16, 17℄, also [1, 2℄ and [5, 10, 15℄).

It is well-known that the 
lass of 
on
ealed-
anoni
al algebras is not 
losed

under derived equivalen
e. The aim of this note is to present a 
ondition un-

der whi
h it follows that a derived-
anoni
al algebra is 
on
ealed-
anoni
al.

The essential property will be the existen
e of some omnipresent inde
om-

posable module. The notion of omnipresen
e was also su

essfully used in

a similar 
ontext in [14, 17℄. Re
all that an A-module M is 
alled om-

nipresent , if ea
h simple A-module o

urs as a 
omposition fa
tor of M .

Moreover, an Auslander-Reiten 
omponent is 
alled regular , if it 
ontains

neither a proje
tive nor an inje
tive module, and it is 
alled semi-regular , if

it does not 
ontain at the same time a proje
tive and an inje
tive module.

The main result of this note is the following
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Theorem. Let A be a �nite dimensional k-algebra over a �eld k. Then the

following 
onditions (1) and (2) are equivalent

(1) (a) A is derived-
anoni
al, and

(b) there is an omnipresent inde
omposable M 2 mod(A), su
h that

(i) the 
lass [M ℄ 2 K

0

(A) has �nite �-period.

(ii) M lies in some regular Auslander-Reiten 
omponent in

mod(A).

(2) A is 
on
ealed-
anoni
al.

Remarks. (1) As the proof of the theorem will show, 
ondition (b) 
an be

repla
ed by the following 
ondition:

(b

0

) There is a (�nite) family of inde
omposables M

i

2 mod(A) (i 2 I)

su
h that their dire
t sum is omnipresent, and su
h that all M

i

(i 2 I) lie

in regular 
omponents in mod(A) and in the same tubular family in D

b

(A).

(2) The almost 
on
ealed-
anoni
al algebra A over an algebrai
ally 
losed

�eld, whi
h is given as path algebra of the quiver

1

x

y

2

z

3

with

relation zx = 0, shows, that in 
ondition (ii) regularity 
annot be repla
ed

by semi-regularity. Namely, A 
an be realized as endomorphism algebra of a

tilting sheaf over the weighted proje
tive line of weight type (1; 2) (see [3℄).

The inde
omposable proje
tive A-module P (3) is omnipresent, lying in a

semi-regular tube of A.

If we restri
t to the tubular 
ase we have a stronger result.

Corollary. Let A be a �nite dimensional k-algebra over a �eld k. Then the

following 
onditions are equivalent

(1) A is derived-tubular, and there is an omnipresent inde
omposable

M 2 mod(A) lying in some semi-regular Auslander-Reiten 
ompo-

nent in mod(A).

(2) A is tubular.

Remark. (3) Let k be algebrai
ally 
losed and A be the poset algebra given

by the quiver

2 5

1 3 6 8

4 7

with all 6 possible 
ommutativity relations. Then A is derived-
anoni
al

(of tubular type (3; 3; 3)), but not tubular (see [12℄). The inde
omposable

proje
tive inje
tive A-module P (8) = I(1) is omnipresent lying in a 
om-

ponent in mod(A) whi
h is not semi-regular. Thus, semi-regularity of the


omponent in the 
orollary is indispensable.

Note, that in the theorem and in the 
orollary the impli
ation (2) =) (1)

is trivial. In the proof of our result we shall use the 
oherent sheaves te
h-

nique approa
h to the representation theory [3, 7℄. This approa
h makes our

proof rather simple. The following 
hara
terization of 
on
ealed-
anoni
al
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algebras from [9℄ is of great importan
e for our proof: A is 
on
ealed-


anoni
al if and only if there exists an ex
eptional 
urve X (see [7℄) { that is,

a weighted proje
tive line if k is algebrai
ally 
losed { and a torsion-free tilt-

ing obje
t in the 
ategory 
oh(X) of 
oherent sheaves whose endomorphism

algebra is isomorphi
 to A.

2. The derived 
ategory of a 
anoni
al algebra

Let � be a 
anoni
al k-algebra over the �eld k (
ompare [16℄). By [16℄

mod(�) 
ontains a stable separating tubular family mod

0

(�), whi
h is a


oprodu
t of uniserial 
onne
ted length 
ategories U

x

(
alled stable tubes).

By the 
onstru
tion of [9℄ there is a small k-
ategory H, whi
h is abelian,

hereditary (that is, Ext

i

H

(�;�) = 0 for all i � 2), noetherian, lo
ally-�nite

(that is, all Hom and Ext

1

spa
es are of �nite dimension over k), 
ontaining

no non-zero proje
tive obje
t and admitting a torsion-free tilting obje
t with

endomorphism algebra isomorphi
 to �. Ea
h inde
omposable obje
t in H

is either in H

0

, the full sub
ategory of obje
ts of �nite length (so-
alled

torsion obje
ts), or in H

+

, the full sub
ategory formed by the torsion-free

obje
ts, whi
h do not 
ontain any non-zero torsion subobje
t. The relation

Hom

H

(H

0

;H

+

) = 0 holds. Moreover, H

0

= mod

0

(�).

There is an auto-equivalen
e � : H �! H, 
alled Auslander-Reiten trans-

lation, su
h that Serre duality holds naturally in X, Y 2 H:

Ext

1

H

(X;Y ) ' DHom

H

(Y; �X);

where D denotes the duality Hom

k

(�; k). Moreover, H admits almost split

sequen
es, and for inde
omposable end term X in su
h a sequen
e the start-

ing term is given by �X (see [9, Thm. 6.1℄).

The 
ategory H is also denoted by 
oh(X), and X equipped with 
oh(X)

is 
alled ex
eptional 
urve [7℄. By tilting theory the 
ategories 
oh(X) and

mod(�) are derived-equivalent, D

b

(X) = D

b

(�), in parti
ular also have iso-

morphi
 Grothendie
k groups: K

0

(X) = K

0

(�). For ea
h obje
t X in H

denote by [X℄ the 
lass in K

0

(X). We then have [�X℄ = �[X℄. Sin
e H is

hereditary, we have

D := D

b

(X) = add

�

[

n2Z

H[n℄

�

;

where the H[n℄ are (disjoint) 
opies of H; for ea
h X 2 H the 
opy in H[n℄

is denoted by X[n℄. Ea
h inde
omposable obje
t in D is of the form X[n℄

for some (inde
omposable) X 2 H and some n 2 Z. For all X, Y 2 H and

all m, n 2 Z we have

Hom

D

(X[m℄; Y [n℄) = Ext

n�m

H

(X;Y );

in parti
ular, if m > n or n > m+ 1, then Hom

D

(X[m℄; Y [n℄) = 0.

The Auslander-Reiten translation � extends 
anoni
ally to an auto-equi-

valen
e � : D �! D (whi
h we denote by the same symbol).
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3. Proof of the results

Assume that 
ondition (1) from the theorem holds, and that D

b

(A) =

D

b

(�), where � is 
anoni
al, and let X and H be as above. The proof has

three steps:

First step: The omnipresent inde
omposable M 2 mod(A) lies in H

0

[n℄

for some n 2 Z. Without loss of generality, we assume n = 0.

Se
ond step: Realize A as (endomorphism algebra of) a tilting 
omplex

T in D. By omnipresen
e, we immediately see that T 2 H

0

[�1℄ [H.

Third step: We have to show, that (using regularity) a
tually T 2 H

+

,

that is, A 
an be realized as (endomorphism algebra of) a torsion-free tilting

obje
t in A and hen
e is 
on
ealed-
anoni
al (see [9℄).

The se
ond step is 
lear. For the �rst : We assume M 2 H. For non-

tubular X and for non-zero M 2 H

+

it follows as in [8, Prop. 4.5℄, that

[M ℄ has no �nite �-period. Thus, M 2 H

0

, and M lies in a stable tube

T of �nite rank. Observe, that in the tubular 
ase, M lies in a stable

tube in any 
ase (sin
e indH 
onsists entirely of stable tubes, 
ompare [6℄),

not ne
essarily in H

0

, but after a possible 
hange of the 
hosen separating

tubular family mod

0

(�) (and thus 
hanging H, 
ompare [6, Prop. 7℄) we 
an

assume M 2 H

0

.

It remains to prove the third step. We assume more generally, thatM lies

in a semi-regular 
omponent C of A. Then C 
ontains either no proje
tive

or no inje
tive A-module.

Case 1 . C 
ontains no proje
tive. Let P be an inde
omposable di-

re
t summand of the tilting 
omplex T , whi
h is an inde
omposable pro-

je
tive A = End(T )-module. Assume that P 2 H

0

. By omnipresen
e,

Hom

A

(P;M) 6= 0, and by orthogonality of the stable tubes, P also lies in

the tube T . By assumption, P andM lie in di�erent Auslander-Reiten 
om-

ponents of A, therefore Rad

1

A

(P;M) 6= 0, and then also Rad

1

D

(P;M) 6= 0,

whi
h gives a 
ontradi
tion sin
e P and M lie in the same stable tube

T , whi
h is standard ([15℄). Therefore, no inde
omposable summand of T

lies in H

0

, hen
e T 2 H

0

[�1℄ [ H

+

and therefore A is dual to an almost


on
ealed-
anoni
al algebra.

Case 2 . The 
omponent C 
ontains no inje
tive. Assume moreover, that

there is an inde
omposable proje
tive A-module P lying in H

0

[�1℄. Then


onsider the 
orresponding inje
tive A-module I = �P [1℄. By omnipresen
e,

Hom

A

(M; I) 6= 0, and by pro
eeding as above we see that T 2 H

+

[ H

0

,

and thus A is almost 
on
ealed-
anoni
al.

Now by [11℄, if C is regular, or if � is of tubular type, it follows, that A is


on
ealed-
anoni
al. This proves the theorem and the 
orollary.
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