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ABSTRACT. In this article some omnipresence condition is given which
assures that a derived-canonical algebra is already concealed-canonical.
The proof exploits the theory of coherent sheaves over exceptional curves.

1. INTRODUCTION

Throughout this article let k£ be an arbitrary field, and A be a finite dimen-
sional k-algebra. We shall use the term module for a finitely generated right
A-module. The category of (finitely generated right) A-modules is denoted
by mod(A). Moreover, the derived category of bounded complexes of A-
modules (see [4]) will be denoted by D?(A). We call A derived-canonical, if
there is a canonical algebra A (in the sense of Ringel/Crawley-Boevey [16])
such that D?(A4) ~ D(A) as triangulated categories. If moreover A is of
tubular type, then we call A derived-tubular. Note that a derived-canonical
algebra is connected since its derived category is. The Grothendieck group
of mod(A) will be denoted by K¢(A), the Coxeter transformation on Ky(A)
by ®.

Recall from [16] that for a canonical algebra A the module category
mod(A) is trisected into mod (A)Vmody(A) Vmod_(A), where mody(A) isa
stable separating tubular family, and there are no non-zero morphisms going
from right to left. Recall from [11] that a k-algebra A is called concealed-
canonical (almost concealed-canonical, resp.), if for some canonical algebra A
there exists a tilting module lying in mod (A) (in mod (A)Vmody(A), resp.)
and whose endomorphism algebra is isomorphic to A. If additionally A is of
tubular type, then we call A a tubular algebra. Concealed-canonical alge-
bras (in particular: tubular and canonical algebras) were studied by several
authors (see for example [6, 9, 11, 13, 14, 16, 17], also [1, 2] and [5, 10, 15]).

Tt is well-known that the class of concealed-canonical algebras is not closed
under derived equivalence. The aim of this note is to present a condition un-
der which it follows that a derived-canonical algebra is concealed-canonical.
The essential property will be the existence of some omnipresent indecom-
posable module. The notion of omnipresence was also successfully used in
a similar context in [14, 17]. Recall that an A-module M is called om-
nipresent, if each simple A-module occurs as a composition factor of M.
Moreover, an Auslander-Reiten component is called regular, if it contains
neither a projective nor an injective module, and it is called semi-regular, if
it does not contain at the same time a projective and an injective module.

The main result of this note is the following

1991 Mathematics Subject Classification. 16G20, 16G70, 14H60, 18E30.
1



2 DIRK KUSSIN AND ZYGMUNT POGORZALY

Theorem. Let A be a finite dimensional k-algebra over a field k. Then the
following conditions (1) and (2) are equivalent

(1) (a) A is derived-canonical, and
(b) there is an omnipresent indecomposable M € mod(A), such that
(i) the class [M] € Ko(A) has finite ®-period.
(ii) M lies in some reqular Auslander-Reiten component in
mod(A).
(2) A is concealed-canonical.

Remarks. (1) As the proof of the theorem will show, condition (b) can be
replaced by the following condition:

(b’) There is a (finite) family of indecomposables M; € mod(A) (i € I)
such that their direct sum is omnipresent, and such that all M; (i € I) lie
in regular components in mod(A) and in the same tubular family in D°(A).

(2) The almost concealed-canonical algebra A over an algebraically closed

field, which is given as path algebra of the quiver 1# 2 —=>3 with
relation zz = 0, shows, that in condition (ii) regularity cannot be replaced
by semi-regularity. Namely, A can be realized as endomorphism algebra of a
tilting sheaf over the weighted projective line of weight type (1,2) (see [3]).

The indecomposable projective A-module P(3) is omnipresent, lying in a
semi-regular tube of A.

If we restrict to the tubular case we have a stronger result.

Corollary. Let A be a finite dimensional k-algebra over a field k. Then the
following conditions are equivalent

(1) A s derived-tubular, and there is an omnipresent indecomposable
M € mod(A) lying in some semi-reqular Auslander-Reiten compo-
nent in mod(A).

(2) A is tubular.

Remark. (3) Let k be algebraically closed and A be the poset algebra given

by the quiver
2—>5

1/3\{6\8

A

4 ——7

with all 6 possible commutativity relations. Then A is derived-canonical
(of tubular type (3,3,3)), but not tubular (see [12]). The indecomposable
projective injective A-module P(8) = I(1) is omnipresent lying in a com-
ponent in mod(A) which is not semi-regular. Thus, semi-regularity of the
component in the corollary is indispensable.

Note, that in the theorem and in the corollary the implication (2) = (1)
is trivial. In the proof of our result we shall use the coherent sheaves tech-
nique approach to the representation theory [3, 7]. This approach makes our
proof rather simple. The following characterization of concealed-canonical
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algebras from [9] is of great importance for our proof: A is concealed-
canonical if and only if there exists an exceptional curve X (see [7]) — that is,
a weighted projective line if k is algebraically closed — and a torsion-free tilt-
ing object in the category coh(X) of coherent sheaves whose endomorphism
algebra is isomorphic to A.

2. THE DERIVED CATEGORY OF A CANONICAL ALGEBRA

Let A be a canonical k-algebra over the field k& (compare [16]). By [16]
mod(A) contains a stable separating tubular family mody(A), which is a
coproduct of uniserial connected length categories U, (called stable tubes).
By the construction of [9] there is a small k-category #, which is abelian,
hereditary (that is, Ext%i(—, —) = 0 for all 4 > 2), noetherian, locally-finite
(that is, all Hom and Ext! spaces are of finite dimension over k), containing
no non-zero projective object and admitting a torsion-free tilting object with
endomorphism algebra isomorphic to A. Each indecomposable object in H
is either in Hg, the full subcategory of objects of finite length (so-called
torsion objects), or in H,, the full subcategory formed by the torsion-free
objects, which do not contain any non-zero torsion subobject. The relation
Homy (Ho, H+) = 0 holds. Moreover, Hy = modg(A).

There is an auto-equivalence 7 : H — H, called Auslander-Reiten trans-
lation, such that Serre duality holds naturally in X, Y € H:

Exty,(X,Y) ~ D Homy(Y,7X),

where D denotes the duality Homy(—, k). Moreover, H admits almost split
sequences, and for indecomposable end term X in such a sequence the start-
ing term is given by 7.X (see [9, Thm. 6.1]).

The category H is also denoted by coh(X), and X equipped with coh(X)
is called ezceptional curve [7]. By tilting theory the categories coh(X) and
mod(A) are derived-equivalent, D?(X) = D’(A), in particular also have iso-
morphic Grothendieck groups: Ky(X) = Ky(A). For each object X in H
denote by [X] the class in Ky(X). We then have [7X] = ®[X]. Since H is
hereditary, we have

D:=D'(X) = add(U H[n]>,

nez

where the #[n] are (disjoint) copies of H; for each X € H the copy in H[n]
is denoted by X[n]. Each indecomposable object in D is of the form X|[n]
for some (indecomposable) X € H and some n € Z. For all X, Y € H and
all m, n € Z we have

Homp (X[m],Y[n]) = Exty "(X,Y);
in particular, if m > n or n > m + 1, then Homp(X[m], Y [n]) = 0.

The Auslander-Reiten translation 7 extends canonically to an auto-equi-
valence 7 : D — D (which we denote by the same symbol).
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3. PROOF OF THE RESULTS

Assume that condition (1) from the theorem holds, and that D’(A) =
D®(A), where A is canonical, and let X and  be as above. The proof has
three steps:

First step: The omnipresent indecomposable M € mod(A) lies in Hy[n]
for some n € Z. Without loss of generality, we assume n = 0.

Second step: Realize A as (endomorphism algebra of) a tilting complex
T in D. By omnipresence, we immediately see that T' € Ho[—1] U H.

Third step: We have to show, that (using regularity) actually T' € H,
that is, A can be realized as (endomorphism algebra of) a torsion-free tilting
object in A and hence is concealed-canonical (see [9]).

The second step is clear. For the first: We assume M € H. For non-
tubular X and for non-zero M € H, it follows as in [8, Prop. 4.5], that
[M] has no finite ®-period. Thus, M € H,, and M lies in a stable tube
T of finite rank. Observe, that in the tubular case, M lies in a stable
tube in any case (since ind H consists entirely of stable tubes, compare [6]),
not necessarily in Hg, but after a possible change of the chosen separating
tubular family modg(A) (and thus changing #H, compare [6, Prop. 7]) we can
assume M € H,.

It remains to prove the third step. We assume more generally, that M lies
in a semi-regular component C of A. Then C contains either no projective
or no injective A-module.

Case 1. C contains no projective. Let P be an indecomposable di-
rect summand of the tilting complex T, which is an indecomposable pro-
jective A = End(T)-module. Assume that P € Hy. By omnipresence,
Hom (P, M) # 0, and by orthogonality of the stable tubes, P also lies in
the tube 7. By assumption, P and M lie in different Auslander-Reiten com-
ponents of A, therefore Rad%’ (P, M) # 0, and then also Rady (P, M) # 0,
which gives a contradiction since P and M lie in the same stable tube
T, which is standard ([15]). Therefore, no indecomposable summand of T'
lies in Hg, hence T' € Ho[—1] U H4 and therefore A is dual to an almost
concealed-canonical algebra.

Case 2. The component C contains no injective. Assume moreover, that
there is an indecomposable projective A-module P lying in Ho[—1]. Then
consider the corresponding injective A-module I = 7P[1]. By omnipresence,
Homa (M, I) # 0, and by proceeding as above we see that T' € H U Ho,
and thus A is almost concealed-canonical.

Now by [11], if C is regular, or if A is of tubular type, it follows, that A is
concealed-canonical. This proves the theorem and the corollary.
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